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Abstract

The evolution of a liquid foam usually mixes quasi-equilibrium topological
and geometrical features in an intricate way. We take advantage of special
properties of ferrofluid froths and of constrained area evolution
simulations, to distinguish the effects of side swapping (T1 processes) from
other rearrangements in the froth. Cell elongation characterizes the froth
and its deviation from mechanical equilibrium as robustly as the usually
measured total wall length, i.e. surface energy.

                                                
* Author for correspondence : graner@ujf-grenoble.fr
+  Present address : T-CNLS, MS B258, Los Alamos National Laboratory, New Mexico 87545,
USA.



2

I - Introduction

3D liquid foams, i.e. a small volume fraction of liquid forming a continuous
network and separating fluid-filled cells (Kraynik 1988), have an intriguing
characteristic. Two a priori unrelated quantities are correlated (Glazier 1993):
(i) the Gaussian curvature of a cell's walls, related to its number of
neighbours, i.e. its topology, and (ii) the mean curvature of its walls, related
to its internal pressure via Laplace's law, which governs the dynamical
evolution of its volume. These quantities are equivalent only for a sphere;
the correlation means that cells in a soap froth are nearly round, which is
not true in arbitrary cellular patterns. How can we understand this
correlation?

For simplicity, we will consider only a liquid foam with fixed cell number
and volumes (in a coarsening foam, we would consider only time scales
much shorter than the characteristic time for cell volume variation). Such
foam relaxes in a finite time towards an equilibrated pattern, corresponding
to a local minimum of surface energy. It is metastable under an
infinitesimal strain; only a change in cell volumes or a finite strain would
force a T1 process (side-swapping, see Fig. 1) and a relaxation towards
another metastable pattern. In the multistability lies the rich complexity of
foam behaviour.

Amongst all possible metastable patterns, an unsheared foam selects only
patterns with nearly round cells, which minimize their wall surface for fixed
gas content. But a foam is deterministic; no thermal fluctuation induces any
ergodic exploration of different patterns, and three questions arise. (i) How is
surface energy minimized? (ii) Does this minimization ultimately reach the
lowest energy level, for fixed cell number and volumes, i.e. the global energy
minimum (possibly degenerate) corresponding to at least one truly stable
pattern? (iii) If not, what is the difference betwen the energy of a selected
pattern and the true global energy minimum?

The present study uses 2D liquid froths, where the selection problem is the
same as in 3D, but much easier to study in experiment, simulation and
theory (Glazier 1989). In 2D, it is tedious but easy to determine whether a
pattern is in (metastable) equilibrium. For given cell areas, check whether all
vertices are three-fold and walls meet at 120°; also check that pressure
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difference across walls are transitive i.e.., on any closed path, the curvatures
of the walls we cross sum to zero, according to the Young-Laplace law. But, if
we look at a picture of a froth, can we tell at once whether it is in a global
energy minimum? Here, the answer is not easy. Conventional
measurements of a soap froth (boundary lengths, topological and area
distributions, their correlations, and the second moments of these
distributions) do not help. While cell elongation has been often used to
qualitatively describe deviations from regular patterns, nobody has precisely
addressed the relation between cell elongation and froth evolution.

In this paper, we provide an easy quantitative test, to answer questions (i-iii)
for any given picture of a 2D cellular pattern. We take advantage of special
properties of ferrofluid froths and of constrained area evolution simulations
to study the effects of individual T1s, both natural and artificial. We define,
then measure, cells' elongation and claim it marks the deviation from the
global energy minimum.

II - Methods

In this section, we describe experiments with magnetic fluids and
simulations with the Potts model. We chose foams with conserved areas to
distinguish coarsening from T1 events. These model systems enabled us to
observe single T1s in detail and even force them.

II.1 - Experiment

Two-dimensional ferrofluid froths have been described in detail elsewhere
(Elias et al. 1997). Immiscible oil and water are placed between two
horizontal Plexiglas plates. Magnetic colloidal particles are stably
incorporated into the aqueous phase, so that when an external magnetic
field, H, is applied perpendicular to the plates, magnetic dipole-dipole
repulsion tends to stretch the aqueous phase. This stretching competes with
the surface tension of the oil-water interface induced by van der Waals
attraction, resulting in longlasting 2D foams, Fig. 2.2. These foams consist of
domains of oil separated by aqueous walls. After a period of equilibration,
the pattern reaches a static equilibrium in which cells neither grow nor
shrink at fixed control parameter, H. The equilibrium thickness of the
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ferrofluid walls decreases with increasing H (Elias et al. 1998a). The volume
of ferrofluid is fixed: the total equilibrium length of the boundaries, and
consequently the equilibrium number of cells in the foam, increase with H.

The foam nucleates with H of the order of 10 kA.m-1 - 120 Gauss. If H later
decreases, some cells must disappear and wall breakage allows the foam to
coarsen, Fig. 2.3. In the limit of zero external field, the pattern turns into a
single ferrofluid drop surrounded by oil.

On the other hand, in the absence of cell nucleation, if H increases, the
pattern disequilibrates (Elias et al. 1998b). Since the oil wets the Plexiglas
better than the water, a thin film of oil actually connects the cells and makes
a (slow) time evolution possible. Cells which have fewer than six sides
grow, whereas cells which have more than six sides shrink, and six-sided
cells do not evolve. This growth law resembles von Neumann's law for 2D
coarsening soap froths, but with reversed dependence on topology, and
without cell disappearance. Before they become too small, the 7-sided cells
lose one side through a T1 and stop shrinking. The 5-sided cells grow and
their neighbours stretch, as shown in Fig. 2.1.

Ferrofluid froths are ideal archetypes to study T1s for the following reasons:

First, cell areas remain constant at fixed H, as discussed above.

Second, ferrofluid foams are easy to observe. Walls are visible with high
contrast. Cells are large, typically 1 cm. Vertex movement is slow, so that T1s
can be conveniently observed on a scale of few seconds, but allow
observation of many individual events within minutes. We turn to
simulations when we need statistics on many cells.

Third, in ferrofluid froths, the external magnetic field plays the role that
time plays in soap froth. This control parameter can be easily tuned, ramped,
stabilized, or reversed; the froth evolves accordingly (Elias et al. 1997). Thus,
instead of simply watching the time evolution of the froth, we can control
it.

Fourth, instead of simply waiting for spontaneous T1s, we can artificially
force them (Elias et al. 1997, 1998a). A piece of magnetic metal, say a needle,
placed over the experimental sample, channels the field lines and locally
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increases the external field. Magnetic fluid drains and accumulates in this
higher field region. Placing a needle near a vertex displaces the vertex
towards the needle. Movements of up to a cell size, i.e. a centimeter are
possible. Removing the needle relaxes the vertex position and sometimes
causes a T1, see section IV.2.

II.2 - Simulations

Simulations of T1s in froth under shear using the extended large-Q Potts
model have been presented elsewhere (Jiang et al. 1998). The great
advantage of the large-Q Potts model is its simplicity (Glazier et al. 1990).
The model is ``realistic'' in that the position and diffusion of the boundaries
determine the dynamics, as they do in real foams and concentrated
emulsions. The large-Q Potts model partitions space into domains of lattice
sites. Each domain (cell) corresponds to a ``spin'' value, σi, while the

domain boundaries (cell walls) are links between different spins. Thus
unlike in magnetic materials, each spin value merely acts as a label for a
particular cell. The surface energy resides on the boundaries only. Cells have
geometric properties as well as surface properties. Simulations using the
large-Q Potts model on low-anisotropy lattices reproduce accurately the
time-evolution of 2D soap foams (Holm et al. 1991).

Since the present study focuses on shear driven topological rearrangements,
we prohibit foam coarsening by applying an area constraint on individual
cells, i.e. deviation from the target-areas contributes to a bulk energy and is
unfavorable. This constraint also eliminates cell disappearance (T2
processes). The total energy of the froth thus consists of a surface energy and
an elastic bulk energy. We extended the Potts Hamiltonian HP to apply

shear strain:

HP = J ij(1 −
neighboringsitesi, j

∑ σ i ,σ jδ ) + (an
cel ln
∑ − nA )2 + γ (yi

sitei
∑ , t)∆x i ,

where Jij and σi are the coupling strength and spin; an and An  are the area

of the nth cell and its corresponding area under zero applied strain,
respectively. The last term corresponds to applying shear, with γ, the strain
field and, ∆xi, the displacement of the spin in the direction of the strain.

The evolution of the froth follows Monte Carlo dynamics. At each Monte
Carlo step (MCS), the following procedure is performed N times, where N  is
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the total number of boundary lattice sites. A site is randomly chosen from
the domain boundary sites (cell walls), and the spin at the site is reassigned
to the spin value of one of its neighbors; the probability of accepting the
reassignment, P, depends on the energy change caused by the spin flip, ∆HP:

P =  1  (∆HP < 0),

exp(-∆HP /T)  (∆HP ≥ 0).

The shear term biases P in the direction of increasing (γ<0) or decreasing
(γ>0) xi. Since in the Potts model, the speed of cell wall migration is

proportional to P, this term effectively enforces a velocity v , i.e. applies a
strain rate to the foam. The strain is proportional to a time integral of v , and
γ is related to the amplitude of strain.

We can freely adjust the range of the strain to apply either boundary strain
(applied to the boundary of the froth only) or bulk strain (strain amplitude
varying linearly through the froth). In this model, we keep a record of the
number of sides for each cell. Since cell disappearance is prohibited, a change
in cell topology indicates a T1.

II.3 - Comparison between experiments and simulations

In the Potts model simulations, when a single cell is stretched and released,
its largest diameter decreases as exp(-t/τ) as it rounds. We define τ as the
relaxation timescale, which is of the order of 10 MCS with the simulation
parameters we used (see Jiang et al. 1998). In experiments, the typical time-
scale of the order of one second is due to surface viscous drag and geometric
confinement by other cells. In practical applications to coarsening foams, the
timescale τ of foam deformation and relaxation is often much faster than
diffusion of the filling fluid, so neglecting coarsening is reasonable. For
instance, in experiments, the cell area is not actually conserved, but its

variation rate ~ 10-2 mm2 s-1 is so slow that it is negligible.

In simulations, the area-constraint is almost always satisfied, i.e. the
deviation of each cell's area from its target value contributes a negligible
energy - less than 1/1000 of the surface energy. In comparison with
simulations or classical experiments with soap froths, our ferrofluid foams
have an additional energy, difficult to quantify, due to magnetic dipolar
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repulsions between ferrofluid walls; since it apparently did not affect the
results presented below, we did not take it into account in the simulations,
although we could. This choice is validated a posteriori by the agreement
between experiment and simulation.

Note that both the experimental and numerical foams have a rather
monodispersed distribution of sizes and side numbers, and remain
monodispersed due to the cell area conservation.

III - Analysis of cell elongation

III.1 - Definitions

Elongation, the qualitative notion that a cell is not circular, can be quantified
in different ways, with varying advantages and disadvantages (see Fig. 3):

• The classical definition is the ratio between the largest and smallest cell
diameters: because it considers only two diameters, it is insensitive to details
of the shape and oversensitive to noise.

• The eccentricity of the cell, defined as the ratio of its largest to smallest
principle moments of inertia, is robust. However, it does not suit our
purpose because it has the same value for, say, a regular hexagon with
straight or concave walls (see Fig. 3). It is thus insensitive to concavity's
increasing the wall length and decreasing the cell area. Moreover, trials on
experimental and simulated foams showed that the eccentricity does not
reflect the expert's intuition, in the sense that the measured eccentricity
sometimes increases while intuitively we see that the cell's irregularity
decreases.

• The variance σ of the side length distribution, hereafter referred to as "side
variance", is defined for polygonal cells, with n  neighbours and n  sides
having lengths {li}. The variance σ = <li2> - <li>2 of these n  sides is zero

when all sides have the same length, and increases when side lengths differ.
This quantity has the advantage of keeping track of individual side lengths:
a short side which meets two longer sides at each of its ends is likely to side
swap. A limitation is that measuring a variance is always more noisy than
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measuring an average. A more serious drawback: consider an hexagon with
equal side lengths, some walls concave and some convex in order to meet at
120° (Fig. 3(c)). Such an hexagon can be arbitrarily elongated, but σ remains
zero. The total variance, σL, of the side length distribution characterizes the
whole froth. Equivalently, we can study the average and variance of the
difference, δli, of a side's length between two successive images.

• The dimensionless perimeter-area ratio, P/√A, of each cell measures the
wall energy of a cell if its area remains constant. P/√A reaches its minimum
value 2√π ≈ 3.55 for a circle and increases as cell side number decreases, as
walls become concave, or as the cell elongates. An elliptical cell of given area
and small eccentricity e << 1 has axes a and b such that b2=a2(1-e2), a
perimeter P ≈ π [2a2 (2-e2)]1/2, an area A  ≈ π a2 (1-e2)1/2, so that the ratio
P/√A goes as 2√π(1+e4/16)+O(e6).

Other similar analyses do not pertain to our problem. For instance, A/P  has
the dimension of a length; the correlation between A/P  and cell size is a
statistical measurement of a whole foam, but does not yield a scale-
independent analysis of a single cell's shape. We could have normalized
P/√A by the P/√A value for a regular n-sided polygon (P/√A)n = 2 [n

tan(π/n)]1/2, but this normalization is discontinuous when n  changes,
precisely during the T1 events we wish to study.

III.2 - Actual measurements

In practice, P/√A is almost always greater than or equal to the P/√A value
for a regular hexagon (P/√A)6 = 3.72. Measuring the deviation of P/√A from

3.72 is thus a good compromise between physical meaning and robustness to
noise, at low computational cost. We also keep track of the individual side
lengths {li}; and describe the topology by the cell side number, n. As

statistical measures of the whole foam we use σL and <P/√A>.

Simulated foams are dry, so that side length is unambiguous. The residual
anisotropy of the underlying weighted next-nearest neighbour square lattice
introduces an error of between 0% and 8% according to the orientation of
the wall portion considered with respect to the lattice. The error i n
perimeter is thus of a few percent. In a foam more polydispersed than ours,
with smaller cells and thus larger artifacts due to the pixelization, the ratio
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P/√A could still be robustly determined, thanks to the Hough
transformation (Ballard 1981).

For experimental image analysis, we used software adapted from NIH-Image
(Cardoso 1997). The image is first thresholded into black and white pixels to
define cell boundaries. A cell perimeter is then measured as the sum of the
distance between boundary pixels. For the same image, the measures of
perimeter determined with this software, and with the method used in the
simulation, differ by a few percent. The image is then skeletized, by eroding
the walls to a thickness of one pixel, and cell sides are defined on the
resulting polygonal cells. The size of the vertices is also reduced to one pixel,
so that the measure of the side length becomes unambiguous. For an n-
sided cell, the measured sum of its n  side lengths is highly correlated
(R>0.99) with, but n pixels more than, the perimeter measured as above.

IV - Results

IV.1 - Effect of magnetic field on the cells' elongation

Decreasing the external magnetic field, H, leads to coarsening. We analyzed a
series of 21 successive images for the same foam at decreasing H and
constant ferrofluid fraction; for instance the series at ferrofluid fraction
φ=0.13 from which Fig. 2 has been extracted. The cell elongation decreases
during coarsening. The variance of cell side length and cell perimeter/area
ratio correlate (Fig. 4); the last is least noisy and conforms better to visual
intuition than cell side length or cell eccentricity. These three quantities
decrease during natural foam evolution. Wall thickness increases, and the
foam gets wetter. As expected, skeletization artificially increases σL. In very
wet foams, small sides or even 4-fold vertices can appear. However, the
values of P/√A and the results presented in the next section are correct for
both dry and wet foams (Fig. 4). T1s spontaneously occur and reduce the cell
elongation.

We also increased H after nucleating the foam. As explained above, wall
lengths increase and cells elongate to increase their perimeter-area ratio.
Here again, T1s spontaneously occur and reduce the cell elongation.
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IV.2 - Natural and artificial T1s

From the same series of pictures of coarsening we extracted successive
pictures between which a T1 had occurred, i.e. each time one side length
reached zero during the natural evolution of the foam. Detailed
measurements of wall length before and after a T1 show that the process
significantly changes roughly 15-20 walls, depending on the image. Fig. 5(b)
shows the change in individual wall lengths. Small walls grow and long
walls shrink, which confirms that a T1 decreases the average elongation of
cells. Simulations display the same behaviour. Both experiments and
simulations (Fig. 6) show that the perturbation of the elongation extends
over a range of roughly three cell diameters. Nevertheless, the averages of
the side length variation over a wall-shell surrounding the disappearing
wall (Fig. 6(a)) show that the averaged elongation decreases only in the
group of 4 cells involved in the T1.

Given the cell areas, does the selected configuration correspond to the
minimum possible energy? Watching a foam does not provide the answer.

Experimentally, we selected a side (Fig. 7(a)), placed a metallic pin above it,
locally attracting magnetic fluid to create an articial unstable 4-fold vertex
(Fig. 1). After removing the pin, this 4-fold vertex spontaneously decayed
into one of the two configurations with two 3-fold vertices. It came back to
the initial configuration if it had a lower energy. In a minority of cases, it
induced an artificial T1 (Fig. 7(b)) if the initial, naturally selected
configuration had a higher energy than the artificially induced one.

These "artificial T1s" did not always decrease the average cell elongation, as
in Fig. 7(a-c) and in Fig. 5(c). The variation of wall length and the initial wall
length were uncorrelated. Of course, more elongated cells were much easier
to side-swap. Comparing the images before and after an artificial T1, we
observed that vertices up to the third neighbours around the T1 moved (Fig.
7(d)): deformation propagated over a finite range.

These motions were due only to the T1. We checked as follows that they
were not due to any possible time-evolution of the froth. By placing a pin
above the newly created side, we made it collapse into a 4-fold vertex; then,
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moving the pin to and fro, we could attract more magnetic fluid and
recreate the side which had disappeared (Fig. 7(c)). After this "reverse T1",
all vertices reverted to their original positions and both images were
identical (Fig. 7(e)). The correspondence is probably not a coincidence, but
rather shows that the initial pattern was nearly equilibrated (a local energy
minimum).

IV.3 - T1 and perimeter-area ratio

A detailed analysis of the perimeter-area ratio supports and refines the
preceding results regarding the decreasing cell elongation induced by a T1.

That a T1 is a short-range process is apparent in (Fig. 8(c)). In typical images,
the two cells which lose a side always have one of the largest P/√As before
the T1, and become significantly rounder after the T1 (Fig. 8(a,b)). In fact, the
sum of the P/√As of the other cells shows no significant variation. Detailed
study as a function of cell distance (not shown) confirms that the T1 perturbs
P/√A over a range of three cell diameters (i.e. up to the sixth shell, as
defined in Fig. 8(c)).

A simulation of a sheared foam is instructive. Starting with a (metastable)
equilibrated foam, we apply a steadily increasing bulk shear (Jiang et al.
1998). After an initial transient, we see that on average P/√A increases
steadily. The rate and amplitude of the shear are chosen to produce isolated
T1s (Fig. 9(b)), and we can examine the four cells around the T1. During the
T1, the cell which has the largest P/√A loses one side and its P/√A decreases
strongly (Fig. 9(e)). The other cell which loses one side also sees its P/√A
decrease for a few MCS and then resumes the average growth. The cells
which gain one side barely change P/√A. Averaging over these four cells
clearly emphasizes that the T1 transiently reduces the mean value of P/√A
(Fig. 9(d)), during a time characteristic of the froth relaxation towards
(metastable) equilibrium. The relaxation of the froth after the shear has
ceased is similar: when a cell loses one side its elongation decreases strongly
(Fig. 9(f)) 1.

                                                
1Artificial T1s could also in principle be simulated in a (metastable) equilibrated foam.
Running the simulations at high temperature, the foam explores other states around the local
energy minimum. As soon as a 4-fold vertex is detected, the foam is quenched by setting the
temperature to zero, and the 4-fold vertex decays into two 3-fold vertices.
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The same effects are experimentally observed in a series of four successive
T1s (Fig. 10). The average P/√A steadily decreases through each T1, while the
P/√A of a cell decreases greatly when a cell loses a side, and increases slightly
when a cell gains a side. Note that when a cell loses a side, P/√A still
decreases over the few next images, implying that the time between
successive T1s is comparable to the relaxation time of the froth and that the
T1s begin to overlap.

V - Mechanical properties: an open problem

V.1 - Probability of a T1

Given a certain perturbation of vertex positions, can we predict where and
when T1s will occur? A weaker version of this question is: can we
statistically predict the probability of T1 occurrence; that is, the number of
T1s occurring in a sufficiently large froth? The answer determines the
foam's elasticity and time evolution due to diffusion-driven cell area
changes; it should depend on the topological and geometrical disorder of the
foam, i.e. the variances of cell topology and side length. We now discuss the
effect of a vertex displacement over a distance ∆, either smaller or larger
than a typical cell side length.

V.2 - Effect of a small vertex displacement

By displacing a vertex over a distance ∆ smaller than the typical cell size, we
can determine the response function of the foam. We characterize it by
measuring the displacement δ(∆,r) of another vertex, at a distance r from the
perturbation. δ(∆,r) only depends on the intrinsic properties of the foam at
the time considered.

In experiments (Fig. 11) and simulations (M. Asipauskas, private
communication), an artificial vertex displacement over a small ∆ induced
displacements of the neighbouring vertices over a range of three typical cell
diameters, the same range as for T1s (Section IV.2). The response function of
the foam is elastic and linear: for each vertex, δ is proportional to ∆ (Fig. 11).
However, δ is not a simple power-law in r, and is not even a single-valued
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function of r. Moreover, the induced displacements have widely distributed
orientations, and strongly depend on quantities which vary simultaneously:
the relative orientations of the walls and the displacement ∆, and the cell
areas and pressures.

V.3 - Effect of a large vertex displacement

A T1 results in an effective vertex displacement ∆ of two vertices. ∆ can be
defined as half the size of the newly created side and is comparable to an
average side length. What is the response function δ(∆,r) of the foam to this
finite value of ∆? As in Section V.2, a T1 does not induce a quadrupolar
displacement field, which would be expected in an homogeneous, isotropic
medium. Since a small displacement of a vertex can trigger a T1, which i n
turn can create a large displacement of neighbouring vertices, the question is
now: under what conditions does an initial vertex displacement trigger an
avalanche of T1s?

A hand-waving argument hints at an answer, which depends on the
topological and geometrical disorder of the foam and remains to be
quantitatively studied:

• (i) Consider first a perfect regular hexagonal lattice, with all sides of length
L. Only when a vertex is moved over ∆≥L can it trigger a T1. In turn, it will
create a displacement of order L, its neighbours will be even less displaced
and there will be no avalanche. In that sense, the regular lattice is not
"excitable".

• (ii) The same holds for a foam with almost uniform cell areas, close to this
hexagonal configuration, i.e. monodispersed in side lengths and side
numbers. Only a few cells lie within the range of the perturbation induced
by a T1, only a small proportion of which can undergo another T1.

• (iii) A foam with a very broad area distribution satisfies the condition for
triggering an avalanche: within a small enough distance r from the T1, lie
enough sides of small enough length L, so that δ(∆,r)>L. If one of the largest
cells side-swaps, an avalanche might affect many neighbouring small cells.
Such an avalanche remains confined to a small fraction of the entire foam.
Its effect on the foam's mechanical properties is weak.
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• (iv) Only a foam with a monodispersed distribution of cell areas but a very
dispersed distribution of cell side lengths constitutes a more interesting
"excitable medium" (Fig. 10). Here an avalanche can propagate over the
whole foam, until all cells are rounder and have a low P/√A, significantly
affecting its mechanical properties.

VI - Conclusion and discussion

Taking advantage of ferrofluid foams, in which side-swapping (T1 processes)
are very easy to isolate, observe, force, and reverse, we have obtained the
following results:
• (i) For given cell areas, a foam relaxes towards an equilibrated pattern, and
its surface energy reaches a local minimum. This energy minimization is
deterministic.
• (ii) The energy minimum is not always the global minimum (lowest
energy) compatible with the cell areas. The naturally selected pattern is
metastable, but not necessarily stable.
• (iii) Estimating the difference between the foam energy and its global
minimum value is difficult. In ferrofluid foams and simulations, the total
wall length variation during relaxation is less than 1%, even when a T1
occurs, and it is thus sensitive to pixellization. Only during the relaxation of
an (artificial) foam very far from its global energy minimum, such as in (Fig.
10), could we measure a significant variation in total wall length. Moreover,
the global minimum value itself is usually not known.
• (iv) On the other hand, in a metastable pattern, the cells' elongation
correlates with the deviation from the global energy minimum. The
dimensionless perimeter-area ratio P/√A is easily measured for a single
image, without prior knowledge of the foam's past or future evolution. It is
a good measure of cell elongation; its minimum value is known: the
theoretical lower bound is 3.55 and in practice it seldom falls below 3.72. As
such, it is a convenient tool for visualizing stress fields.
• (v) Natural T1s, which correlate with the geometry and not the topology of
the foam, decrease cell elongation. The cell which has the highest P/√A is
likely to lose a side and decrease its P/√A, while cells which gain sides will
slightly increase their P/√As. This result is not an artifact due to the
variation with n of the P/√A value for a regular n-sided polygon, (P/√A)n =
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2 [n tan(π/n)]1/2. In fact, since (P/√A)n decreases with increasing n, the
normalized value (P/√A)/(P/√A)n shows an even larger variation than

P/√A. It would be instructive to investigate the correlations between the
elongations of the side-swapping cells and of their neighbours.
• (vi) That artificial T1s do not decrease cell elongation suggests a causal
relation between elongation and natural T1s.
• (vii) Natural T1s, artificial T1s, and reverse T1s induce non-local but short-
range perturbations.
• (viii) T1s affect the geometry, not only of the cells which side-swap, but
also of about a dozen of their neighbours. P/√A, the side length variance σ
and vertex displacements vary for cells within three typical cell diameters of
the T1.
• (ix) When displacing a vertex over a small distance ∆, the displacement
δ(∆,r) of another vertex, at a distance r from the perturbation, is linear in ∆
and reversible. Predictions of δ(∆,r) could rely on the analytical
minimization of energy for two vertices' positions while all their
neighbours are kept fixed. Since experiments prove that the perturbation has
a finite range, an iteration by letting every possible vertex pair move should
eventually converge. Simulations could help identify the role of disorder
and boundary conditions.

Understanding the spontaneous decrease of 2D cell elongation through T1s
might determine whether, starting from an arbitrary initial froth, the
distribution of cells' elongation relaxes until it reaches a (possibly universal)
predictable distribution. By generalizing the definition of elongation as
surface/(volume)2/3, this study might be extended to 3D cells.
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Figures captions

Fig. 1:
Side-swapping (T1 processes). The initial configuration (a) has two 3-fold
vertices. When the side length decreases to zero, an unstable 4-fold vertex
appears (b), and eventually decays into a new local energy minimum. (c)
Cells number 1 and 3 lose one side. The reverse T1 (c-e) occurs via a
different unstable 4-fold vertex (d).

Fig. 2 :
Images of a 10x10 cm2 froth, ferrofluid fraction φ=0.13. The pattern
evolution is dominated by the external magnetic field H perpendicular to
the plane of the image. The foam was nucleated at H=11.19 kA.m-1.
Decreasing the field decreases the total wall length of the foam, analogous to
increasing time in soap froths. (1) H=11.19 kA.m-1, (2) H=9.15 kA.m-1, (3)
H=7.50 kA.m-1, (4) H=6.27 kA.m-1. See other examples in (Elias et al. 1997).

Fig. 3 :
Examples of hexagons with different elongations. (a) Regular hexagon: the
ratio of largest to smallest diameter is 2; the inertia matrix is isotropic and
thus has zero eccentricity; variance of side length is zero; P/√A=P/√A6 =3.72.

(b) Stretched hexagon : these four quantities have strictly increased. (c)
Curved walls: same ratio of largest to smallest diameters as in (b), larger
eccentricity and P/√A, zero side length variance.

Fig. 4 :
Elongation of cells during froth coarsening, see (Fig. 2). The variance of cell
side length (closed circles), and cell perimeter/area ratio (open squares) have
been averaged over all cells of the foam. Each point is an average over four
different foams, made with the same ferrofluid fraction φ=0.13.

Fig. 5 :
Each dot represents the variation in length of a wall between two images,
plotted versus the initial length, expressed in mm. (a) No side length varies
more than five mm between two images at fields H=9.8 kA.m-1 and H=9.0
kA.m-1 without a T1 between them. (b) 18 side lengths vary significantly
between two images at fields H=11.2 kA.m-1 and H=10.6 kA.m-1, with one
T1 between them; they belong to the 19 cells closest to the T1. Amongst these
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sides, the shorter ones tend to increase in length while longer sides tend to
shrink, thus reducing the average cell elongation; the straight line is a linear
fit through these side changes. (c) Between two images separated by an
artificial T1 (see Fig. 7), 24 side lengths alter significantly, but with no
correlation to their original length.

Fig. 6 :
The (a) average side length variation, and (b) its standard deviation, are
measured for each cell wall of a foam before and after a natural T1 process,
in an experiment (closed circles) and in a simulation (open squares). To
show the range over which the perturbation due to the T1 extends, the
variation for each wall is then averaged over each wall shell, defined as
follows. Shell 1 is the disappearing or created wall. Walls of shell two touch
shell one, walls of shell three touch shell two, and so on. The shells are
therefore roughly circular and centered on the disappearing wall. The last
affected shell is the sixth or seventh shell, i.e. walls which are separated
from the T1 by roughly 3 cell diameters.

Fig. 7 :
(a-b) A T1 process is artificially forced in a ferrofluid froth, see section II.1; (b-
c) then the inverse T1 is forced, to return to the original pattern (c). (d)
Superposition of the images (b) after (appears dark) and (a) before (appears
grey) the first T1. (e) Superposition of the images (c) after and (a) before both
T1s. The images are indistinguishable.

Fig. 8 :
The variation of P/√A before and after a natural T1 plotted versus its initial
value, for each cell, in the same manner as in (Fig. 5). (a) Experiment
(H=11.23 kA.m-1 before the T1 and H=10.98 kA.m-1 after). Two cells have a
P/√A decrease larger than 0.3. (b) Simulation of 26 cells. In this case, the T1
occurs during the relaxation of a non-sheared pattern. (c) The same data
plotted as a function of cell distance averaged over cell shells (different from
the wall shells defined in Fig. 6), defined as follows: shell 1 contains the 2
cells which lose one side, shell 2 contains the 2 cells which gain one side,
cells of shell 3 touch shell 1, cells of shell 4 touch shell 2, and so on.

Fig. 9 :
Simulation of a sheared froth: the shear increases the average elongation,
until a T1 process relaxes it. (a,b,c) Snapshots of a single T1 under bulk shear.
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Strain rate linearly depends on the vertical position, schematically
illustrated beside (a). Grey levels indicate cell side numbers. (a) 550 MCS, (b)
750 MCS, (c) 950 MCS. Cells 1, 2, 3, 4 elongate under shear. A T1 process (b)
reduces the elongation of cells 2 and 4 when they each lose a side. (d) The
elongation, P/√A, averaged over 26 cells (squares) steadily increases under
shear. The average elongation over only the four cells involved in the T1
(triangles) decreases when the T1 occurs (vertical line). (e) Details, cell by
cell. Before the T1, the four cell elongations increase under shear like the
average. After the T1, the two cells which lose one side (pluses & circles)
decrease P/√A. The two cells which gain one side (squares & triangles) do
not change P/√A. (f) Same behaviour during a T1 (vertical line) when the
froth relaxes after the shear has been suppressed at t=0 MCS.

Fig. 10 :
(a) A foam where elongated cells have been artificially nucleated then
spontaneously relaxed through four T1 processes causally related in a chain
reaction. Since the typical time scale of a T1 is ~1s, well separated images
were captured between each T1; arrows mark each new side. (b) The plots
show P/√A for two individual cells, indicating where they gained (+1) or
lost (-1) a side, as well as the average <P/√A> over the whole foam (squares).

Fig. 11 : (a) Skeletized images of a ferrofluid froth in (metastable)
equilibrium (thick lines) and after an additional external magnetic force has
displaced the vertex O over a distance ∆ (thin lines). (b) The displacement
δ(∆,r) of a vertex is not simply a function of the distance r to the
perturbation. (c) Image of another ferrofluid froth in (metastable)
equilibrium (black lines). A vertex has been displaced over two different
values of ∆ in the same direction (white lines); δ(∆,r) appears roughly
proportional to ∆. In (d), points lie close to the first diagonal (one symbol =
one vertex, values of δ < 0.07 mm are not shown). (e) Similar diagram for
another experiment. A vertex has been displaced over three different values
of ∆ in the same direction. Perturbation ∆1=2.3 mm upwards; perturbation

∆2=5.9 mm downwards (closed symbols); perturbation ∆3=5.15 m m

downwards (open symbols).
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